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ABSTRACT
Spatial network queries often have performance bound by the
structure and size of the underlying network.  This paper
discusses methods of improving the performance of these
queries, specifically those using network expansion algorithms,
by creating a graph representation of the network and removing
unnecessary nodes and edges.  In addition, two methods of
storing and accessing the graph are compared for speed and
usefulness in different applications. A main memory approach to
graph storage using a shared library is compared to a database
storage approach.  Though fast, the main memory approach has
some limitations in its usefulness.
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1. INTRODUCTION
Work on spatial databases has been extensive over the years.
However, the work has for the  most part been limited to
systems where objects may be located anywhere on the
Euclidean plane.  Just as important are systems where objects
are limited to locations on a network such as roads or rivers.
The problems and solutions involved in these systems are very
different from Euclidean systems.  Managing large spatial
network databases requires developing separate solutions.

Papadias, et. al. [1] created a comprehensive approach to
querying spatial network databases.  They introduced network
expansion as an efficient technique for performing nearest
neighbor (KNN) and range queries over objects constrained to a
network.  Network expansion remains a widely used technique
for performing these queries and is the benchmark by which
other techniques are measured [2].  The algorithm is a simple,
yet efficient, method of performing the queries.

The network expansion, and any other network query
algorithm, requires a network to operate upon.  Usually, this
network takes the form of a graph. This graph usually must be
created from some underlying network dataset.  Some
preprocessing work must be done simply to create an efficient,
usable graph.  More preprocessing  may even increase the
efficiency of the application.

This paper discusses efficient methods of creating and storing
the spatial network to increase the performance of network

expansion and other spatial network algorithms.  The network
is initially created and stored as a graph in a database.
Unnecessary nodes are removed from the graph to decrease
storage requirements and query execution times.  The entire
process is performed in parallel on a Beowulf cluster which
reduces the computation time substantially.

Also discussed are two different methods of storing the network.
One method uses a shared library which keeps the graph in
main memory.  This method is fast but is not scalable and
places great demand upon the underlying system.  Using a
database for graph storage is much slower but is also much
more scalable

2. BACKGROUND
2.1 Spatial Network Queries
Two types of queries are used commonly in spatial networks:
range queries and nearest neighbor (KNN) queries. A range
query finds all objects whose distance is within a certain range
from a given query point. Below is a formal definition of a
range query R:

R = {o ∈ M | d( p,o) < ρ}  

M = points of interest

p = query point

d(x,y) = distance over network from point x to y

ρ  = max distance from the query point

The KNN query returns the K closest objects to the query
point. KNN is the definition of set returned by a nearest
neighbor query:
KNN = {N ⊂ M | N = k ∧∀o ∉ N,q ∈ N ⇒ d( p,o) > d (p,q)}

K = number of objects to return

2.2 Network Expansion
Papadias, et. al. [1] suggest two general methods for performing
KNN and range queries.  The first is Euclidean restriction.
This method exploits the fact that the network distance of a
point is always greater than or equal to the Euclidean distance.
The other method is network expansion.  Network expansion is
the faster algorithm and is used in other spatial network queries,
such as the moving object KNN query by Jensen, et. al.  [3].
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It is also the benchmark used to compare to other spatial
network query algorithms, such as the Voronoi based KNN
query introduced by Kolahdouzan, and Shahabi [2].

Network expansion works by traversing the network from the
initial query point, similar to Dijkstra’s algorithm. As it
traverses the network it adds points of interest that match the
query as it reaches them.  For KNN queries the algorithm
continues until K points have been retrieved.  For range queries
the algorithm continues until all segments within the given
range are traversed.  Like Dijkstra’s algorithm, network
expansion has complexity dependent on the number of nodes
and edges in the network.

2.3 Network Model
A real world spatial network such as a system of roads must be
modeled for use in a computer system. The modeled network
will be in two dimensions instead of three and the network is
approximated as lines. Nodes are placed at intersections and
endpoints in the network.   The piece of a network between two
nodes is a segment.  Segments are the basic type of the
network.

Each segment is defined as a polyline.  A polyline L is a
sequence of points:

L ≡ ( p1, p2 ,...,pn ) where pi ∈ ℜ 2

A node N in the network is represented as:

N ≡ pi ∈ ℜ 2 where pi = p1 ∈ L = ( p1,...,pn) or 
pi = pn ∈ L = ( p1,...,pn)

Nodes indicate all the connections between road segments and
therefore indicate how travel can take place in the network.  If
two road segments do not share a node then they do not
directly connect.

In this model segments are bidirectional.  The assumption of
bidirectional segments is not important to methods described
later and small modifications will allow support for
unidirectional segments

The spatial network may be modeled as a graph as done by
Jensen, et. al. [3].  The graph representation simplifies the
network by removing the geometry.  Because the network
expansion algorithm functions similarly to classical graph
search algorithms representing the network as a graph poses no
difficulty.  What follows is a discussion of how to create and
process the graph to increase the efficiency of network expansion
as well as other spatial network algorithms.

3. GRAPH PROCESSING
3.1 The Data Set
The actual data for the spatial network may come in many
different forms.  For this research, TIGER data from the US
Census was used as the underlying network.  The primary
reason for using this specific data is that it is free to the public
and provides the road network for the entire United States.  For
these experiments only two states were used, Louisiana and
California.

Another possible source of spatial network data is provided by
companies such as Navtech and TeleAtlas.  The data provided
by these companies is more accurate and better formatted for use
in actual spatial network applications.  However, these data sets
are expensive and thus not available for this work.  The
methods described in this work are applicable to these
commercial data sets and other spatial networks which are not
roads.

3.2 Graph Creation
The initial network data is organized as network segments
which are encoded as a sequence of latitude and longitude
coordinates.  First, the two endpoints of each network segment
are created as nodes in the network graph.  In this system, the
points of interest are also included as nodes in the graph.
Including points of interest as nodes in the graph is not
necessary to the graph processing described below.  Often the
points of interest are too dynamic a set to hard code them into
the graph. If points of interest are not included as nodes, it is
required that they be explicitly linked to the network segment
on which they lie.

The graph is stored as a sequence of adjacency lists, one for
each node.  The following information is stored in the graph for
each node in the network:

1. The id of the node.

2. The coordinates of the node.

3. The number of adjacent nodes.

4. An array of references to adjacent nodes.

5. The distance to each adjacent node.

6. A reference to point of interest information if this node
is a point of interest.

The above fields must be updated as the graph is processed.
Below are the important changes that are made to the graph of
the network.

The original network data does not necessarily ensure correct
connectivity between network segments.  Two segments which
are connected in the real world may have endpoints whose
coordinates are slightly different.  These nodes should have the
same coordinates and be labeled as the same node.  All nodes
should be compared to ensure that small decimal errors do not
differentiate nodes which should be the same.  An R-Tree over
the node coordinates will allow efficient search for nodes which
should be merged.  It is essential that the network segments be
updated with new node equivalences to ensure that connectivity
information is preserved.

After all the nodes are determined the graph is pruned of
unessential nodes and segments. Nodes and line segments
which contain points of interest will not be pruned.  These
sections of the graph contain the information important to the
network queries an must stay intact. Jensen, et. al. [3] proposed
such a technique and removed all nodes with two adjacencies.
Removing nodes with only two adjacencies is justifiable



because these nodes do not model connectivity to an alternate
path.  Collapsing these segments into one segment cannot alter
possible paths taken by a graph traversal algorithm.

Nodes with one adjacency may also be removed from the graph.
It is these nodes which often allow the greatest amount of
pruning to be performed. These nodes represent end sections of
the graph which contain no useful information to answer queries
and no connectivity information. Figures 1 through 3 show an
example of nodes pruned from a graph.  Yellow nodes are
regular graph nodes.  The red nodes are actually points of
interest and are exempt from the pruning requirements.  In
Figure 1, the nodes with one adjacency are removed from the
network.  Figure 2 shows nodes with two adjacencies pruned.
The final network with all nodes removed is shown in Figure
3.

The resultant graph after pruning will have fewer nodes and line
segments.  Most queries on the pruned graph will run faster
because their complexity is based on the number of nodes or
line segments in the graph.

Figure 1. Remove nodes with one adjacency.

Figure 2. Remove nodes with two adjacencies.

                      

Figure 3. All nodes pruned from network.

The process of removing nodes is an iterative one.  Node are
repeatedly removed from the graph until no remaining nodes fit
the pruning categories.  The effectiveness of removing these
extra nodes depends on the original network data. Some
network data contains many of these extraneous nodes and
segments whereas  other data are organized to not have the extra
line segments. Pruning will be more effective in the former
rather than the latter.  Most network data will be reduced in size
by the pruning, especially the removal of end nodes.  Figure 4
shows an area of roads in Louisiana with the resulting pruned
graph overlaid.  Notice the decrease in complexity of the pruned
graph.

3.3 Parallelizing the Process
Because removal of nodes is an iterative process, it will take
quite a while to complete on a large and complex network.  If
possible, running the graph creation in parallel on a cluster will
reduce the required time substantially.  The pruning process
parallelizes easily.  All slaves are given a copy of the network
database.  The network is split into disjoint geographic boxes
by the master and assigned to each of the slaves.  The slave
removes the unnecessary nodes from its area and sends the
changes back to the master.  Once all slaves have finished the
current iteration, new work is assigned and the process repeats
itself until all work is finished.  Pseudo code for the above
algorithm is shown in Figure 5.

Figure 4. Example of graph reduction.



BEGIN
| nslaves ?  number of slaves
| FOR  i=1 To  nslaves STEP 1 DO
| | work ?  next set of id to process
| | send work to the slave i
| END FOR
| work ?  next set of id to process
| WHILE work DO
| | wait for the signal work done of a slave
| | send work to the slave that just finished
| | work ? next set of id to process
| END WHILE
| FOR  i=1 To  nslaves STEP 1 DO
| | wait for the signal work done of a slave
| END FOR
END

Figure 5. Algorithm for parallel graph reduction.

Two standard problems when parallelizing a process are how to
handle the boundaries between slave areas and how to limit
inter-process communication. Nodes whose adjacencies are in
other slave areas will require special handling.  And graph
changes during the pruning process necessitate costly
communication between the master and the slaves.

The solution to the boundary problem is to ignore all nodes
whose adjacencies are not in the same area.  These nodes are left
to be handled by later iterations.  After all slaves have processed
their first iteration, the master must redistribute the work.  By
changing the location of the boundaries, the probability that a
node will be near a boundary for each iteration is greatly
reduced.  If any boundary nodes do remain unhandled at the end
of the pruning, the master node will make one final pass over
the entire area and prune the problem nodes.  An example of
two slave areas is shown in Figure 6.  The nodes which are
removed have adjacencies only in the same slave area.

Figure 6. Two adjacent slave graph areas.  Node N2 is not
pruned because its adjacency is in another slave area.

N1/N6 is pruned by slave1/slave2.

To reduce communication within the cluster database updates
are made selectively between the master and slaves.  Slaves
only send back necessary changes to the master and the master
only updates the necessary portions of the slave database.  For
example, if a slave removes four nodes in the current iteration,
only the information for those nodes need be sent back to the

master.  And when assigning work to a slave, only the area
assigned should be updated in the slave’s database.  Other areas
are inconsequential and should be left unchanged.

3.4 Graph Validation
For complex networks it will be difficult to ensure that the
resulting graph is valid.  A validation program checks to ensure
correctness in the graph.  The following are properties that
should hold in the final graph:

• If A is adjacent to B then B is adjacent to A.

• If A is in the graph then all nodes adjacent to A are in
the graph.

• d(A,B) = d(B,A)

4. GRAPH STORAGE AND ACCESS
This section compares two methods of storing and accessing
the graph created above.  Each method has its benefits and
should be chosen with knowledge about the network data as
well as the application requiring access to the graph.

4.1 Database Storage and Access
The first method of graph storage is to use a database.  The
database provides a simple method of managing the graph data.
This method is highly scalable which is important when using
large network data sets.  Accessing the graph is done through
basic SQL queries.  The main concern with this method is how
to program the spatial network queries.  The test database used
in this project is PostgreSQL [4], but the techniques apply to
most database management systems (DBMS).

Two techniques are possible to access the data from a program
implementing the spatial network queries.  The first is to have
a program external to the database perform the queries.  The
benefit of this method is that it is usually easy to write such a
program.  The choice of programming languages and tools is
wide.  Often, there are interfaces that allow the external program
to be accessed from within the database and thus allow the
queries to be used seamlessly.  The problem with this method
is that database access from the query program is usually slow.
External connections to a database require overhead and limit
performance, especially when there is a lot of data.  Given that
most useful network graphs are fairly large this is problematic.

The second method to access data from the network queries is
to write an extension to the database.  Instead of an external
program, the queries are written as internal functions.  As a
result, the queries have the same access privileges and speed of
native database functions.  In PostgreSQL this functionality is
provided by the Server Programming Interface (SPI).

SPI is simply a set of native interface functions that allow
access to the Parser, Planner, Optimizer, and Executor of the
DBMS.  The benefit of SPI (or similar functions in other
DBMS) is that user defined queries are performed fast.  There is
no connection overhead or inter-process communication.  The
downside is that using SPI is more complex that simply
writing an external module.  Language choice is limited when



extending the database functionality.  SPI is written in C and
full access to its functionality is only available using C (though
some other languages provide limited accessibility).  SPI also
requires access to data using specific macros, functions, and data
structures which can complicate the writing of functions.
However, because SPI is the fastest method of accessing
database data, it is our chosen method of interfacing with the
database.  Both KNN and range queries on the spatial network
were implemented using the network expansion algorithm and
the Server Programming Interface.

4.2 Shared Library Access
The second method of storing and accessing the data is through
a dynamically accessible shared library.  A special program
generates a C source file containing the entire structure of the
graph. All of the information contained in the database version
of the graph is also contained in the shared library version.
There are important benefits to this method but also some large
deficiencies which may preclude its usefulness.

The shared library is actually a hard coded table of nodes.  Each
node is a global variable.  The library also includes some
statistics useful when using the graph like number of points of
interest, etc.  The graph itself is accessed through macros which
simplify the interface and can be used directly through
PostgreSQL.

The shared library is modifiable so that the network expansion
algorithm can set flags on particular nodes.  These flags indicate
containment in particular lists used by the network expansion
algorithm.  In addition, the flags record the position of the node
in a particular list.  The result is that these lists rarely need to
be scanned and the network expansion algorithm performs more
efficiently.  A similar fix could be done with the database access
method but the list scan time costs much less than data
retrieval and thus is not a large improvement.

The benefit of the shared library graph is speed.  The graph is
kept in main memory and results in extremely fast access times.
Applications spatial network queries often require speedy results
making the shared library a perfect access and storage method.
Not only is access fast but loading the library is fast.  Other
main memory approaches would require loading the library
from a data file or database.  The data would need to be parsed
and placed in the correct data structures.  The shared library
method does not require this startup overhead, making it perfect
for an experimental environment with many tests and restarts.
In particular, the shared library provides an excellent platform
for comparing network expansion algorithms to other spatial
network algorithms.  The access speed benefit of the shared
library approach is matched by other main memory approaches
which may be more suited to an always on, deployed
application.

The problems of the shared library graph, and other main
memory approaches, are numerous however.  The shared library
is not a scalable method of storing the graph.  A road network
covering the entire United States would require about 2-3
gigabytes of main memory simply to hold the shared library.

In addition, compiling the shared library requires even more
memory.  Another issue is that the shared library is static.
Once changes are made to the graph the library requires a
complete recomplication.  Having to recreate a graph every time
one node or segment changes is a significant problem.

These problems are not insurmountable.  The memory usage is
large but may be handled with current systems.  Large networks
may be stored in many shared libraries, possibly contained on
many nodes in a cluster.  The static nature of the shared library
approach is not a problem with other main memory approaches
which could be used with dynamic networks. In many cases,
spatial networks are static data sets and there is no need to
update the graph on regular intervals.

5. EXPERIMENTAL RESULTS
The data used in the experiments were the road networks of
Louisiana and California.  The road networks were obtained
form the US Census Bureau Tiger/LINE data.  The data was
modified into the Shapefile file format and loaded into
PostgreSQL using the PostGIS [5] extension.  The cluster used
in the experiments is a 72 node Beowulf cluster.  It consists of
63 slave nodes which are 2.2Ghz Intel Pentium IV systems and
9 slave nodes which are 2.4Ghz Intel Pentium IV systems.  All
slave nodes have 1 GB of memory.  The master node has dual
2.2GHz Intel Xeon processors and 2 GB of memory.

5.1 Graph Reduction
Table 1 indicates the initial statistics for the networks as well
as the results of the graph reduction.  The graph reduction is a
useful step in the graph creation process for these datasets.  The
number of nodes in the Louisiana and California graphs are
reduced by an order of magnitude.  The reduction for these two
networks are dramatic because of their initial structure, but most
spatial networks will gain considerable benefit from the
reduction step.

Table 1. Initial Statistics and Results of Graph Reduction

Initial
Nodes

Post-Reduction
Nodes

Reduction
Factor

Louisiana 1,200,091 137,947 88%
California 4,931,271 624,905 87%

5.2 Comparison of Access Methods
Each access method was tested using KNN queries and range
queries over the Louisiana Network.  Both the KNN query and
the range query use the network expansion algorithms.  The
network expansion algorithms for the SPI and shared library
access methods were kept similar; however, each algorithm was
optimized for the particular access method used.

The results show that the shared library queries perform
substantially faster than the SPI queries. Figure 7 and Figure 8
show the results for range and KNN queries plotted on a
logarithmic scale.  Figure 9 and Figure 10 show the results for
small values of K and range plotted on a linear scale.  The time



to perform KNN and range queries becomes asymptotic as K
and  range grow large because at a certain point the entire
network is being expanded and there are no more paths to
explore.  Figure 11 and Figure 12 show the increase in speed of
the shared library method in comparison to the SPI access
method.  Again the value becomes constant once the entire
spatial network is expanded.  An increase in the size of the
network will show a greater speed improvement for larger
values of K or range.
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6. CONCLUSION
The graph processing described above is useful for a variety of
applications.  Spatial networks have become increasingly used
by a variety of applications, including online mapping and in
vehicle navigation systems.  These systems always require high
speed.  By reducing the complexity of the network expansion
and other network algorithms, graph reduction can provide a
significant decrease in processing time.

The two graph storage and access methods discussed in this
paper each have benefits.  The shared library graph is an order of

magnitude faster than the database stored graph and provides
fast startup times for applications.  However, applications have
limited memory capacity and thus are unable to store the graph
in main memory.  With large networks the shared library
approach becomes untenable without splitting the network into
smaller pieces.  Even though the database access is slow it is
also highly scalable with respect to network size.  With proper
indexing, database access may provide performance ample for
many applications.
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